Campus Issue #04-05-07

Action Taken:

This issue was submitted by the Campus Development Committee (CDC) regarding inclusion of bicycles as a mode of transportation in the Facilities Master Plan. This issue was reviewed by Executive Council and the issue was forwarded back to the CDC with the following recommendations: 1. A subcommittee be formed, similar to the Recycling Subcommittee, and an invitation be sent out for people who are interested in this issue to serve to promote it on the campus. 2. A contact person be identified and published in SCC e-News. 3. The subcommittee develop a paragraph regarding consideration of bicycles as a mode of transportation in future building projects on campus. The language needs to be consistent with the general, guideline language within the Facilities Master Plan. This paragraph will be considered by Executive Council as an addendum to the Facilities Master Plan.

Campus Development initiated a subcommittee with Gayle Pitman as the contact person (champion). The subcommittee was announced in the March 11, 2005 issue of SCC e-News. Campus Development suggested that the subcommittee be housed under the Planning Committee. Executive Council recommended that the subcommittee be housed under the Planning Committee while working on issues related to the Master Plan and then be re-evaluated based on the nature of the continuing work that they see to be done. A President’s Response was issued on 4/6/05 by Patricia Hsieh with instructions as follows:

“To implement this decision,

• The Process Coordinator will contact the Tri-Chairs of the Planning Committee, the Tri-Chairs of the Campus Development Committee, and the Champion of the Bicycling Subcommittee.
• It is suggested that the Tri-Chairs of the Planning Committee set up a meeting with the Champion of the Bicycling Subcommittee to establish the logistics of working together.”

The Subcommittee sent their suggestions back to Executive Council in a memo dated 5/18/06. Executive Council reviewed the memo and attachments in their August 30, 2006 meeting and recommended that the proposed wording be added to the Facilities Master Plan.

President’s Response to Executive Council

I have reviewed the Executive Council recommendation on Issue #04-05-07 and concur with the recommendation to add the proposed language on bicycles to the Facilities Master Plan. To implement this decision,

1. The Dean of Planning will update the Facilities Master Plan document on the web and will send out paper copies of the modifies pages to everyone who has a copy of the plan in a binder.
2. The Director of Operations will review the quantity and placement of bike racks on the campus and make any needed adjustments.
3. The Public Information Officer will publicize any changes as needed.

[Signature]
[Signature]
Arthur Q. Tyler, President
Date

September 1, 2006
Craig, Greg, Karen, Gayle,

Just to let you know...your proposal for language changes to the Facilities Master Plan to include bicycles is going before Executive Council this Wednesday August 30th. You are welcome to attend the meeting if you wish. (1-3pm in the President’s Conference Room). I will let you know the outcome of this discussion.

Thanks for your work on this issue.

Nelle

Nelle Moffett
Planning, Research & Institutional Effectiveness
Sacramento City College
916-558-2512
(to be inserted throughout pp. 3-4 and 3-5 of the Master Plan for Student Success –
Facilities Component)

The TAP Plan
As a commuter campus, all students travel to the College from off-campus areas. Though
a substantial number of students and staff walk, bicycle, or use public transportation,
including the newly opened light rail station, the majority drives to the campus. Thus,
access to parking is a major factor at the Sacramento City College campus, affecting
students, staff and the neighboring community. To address the many issues related to
commuting to the campus, the Los Rios Community College District invested in the
development of a Transportation, Access and Parking Plan (TAP Plan). TAP Plan
recommendations are incorporated into the Facilities Component document and timeline
for project implementation.

Major recommendations include the construction of a multi-level parking structure and
significant road and intersection changes to improve access to parking. The new multi-
level parking structure will have the biggest impact on increasing parking capacity. By
building up, this structure preserves limited campus land while dramatically increasing
capacity. Built on what is now surface parking, this structure’s location also supports
events at Hughes stadium. The parking structure, lot reconfigurations and new or
expanded parking areas increase available parking capacity to 3,100 student spaces and
680 staff spaces. The recent completion of the new south parking lot provides 350 new
spaces. Full implementation of the TAP plan will provide an additional net gain of 910
parking spaces. Reconfiguration of the surface lots north and west of the new parking
structure also increase capacity and efficiency. Relocation of the tennis courts allow
expansion of staff parking Lot F, more than doubling the number of cars that can park in
that location. Another element of increasing parking capacity is the commitment to
continue to acquire land for additional or replacement parking as it becomes available in
appropriate locations.

Improving traffic patterns to and from parking is another recommendation of the TAP
Plan. The reconfiguration of two intersections on Sutterville Road will provide efficient
signalized access to parking areas. First, a major project at 23rd Street reconfigures the
existing looping roadways with a more typical four-way signalized intersection, allowing
access in all directions and providing a more conventional and direct route to and from
parking areas north and south of Sutterville Road, greatly improving convenience and
access to the campus. This route becomes the main access to student parking, while
maintaining secondary access at 24th Street and 12th Avenue.

Second, reconfiguration of the existing intersection and traffic signal at 21st Street will
provide access to staff parking Lot F. Adding a fourth leg to this intersection gives safer
and more efficient access to the expanded parking lot and eliminates current
“uncontrolled” access. By connecting Lot G, south of Rodda South to Lot F, another
uncontrolled access point on Freeport Boulevard is also eliminated. The existing covered
walkway will be modified to accommodate vehicles and bicycles, and preserve the
pedestrian link to the southern part of the campus.
The *TAP Plan* also seeks to improve pedestrian experience on the campus as staff and students leave their parked cars or bicycles, or arrive via public transportation and walk to campus destinations. The new parking areas allow the relocation of parking from areas in the heart of the campus better suited as pedestrian space. Extension of pedestrian sidewalks and landscape areas replace parking currently allowed in front of the North Gym and between the Auditorium and the Technology and Cosmetology/Graphic Communication buildings. Improved bicycle access from street routes to bicycle parking areas and enhanced bicycle parking facilities replace limited racks in unmonitored areas.

With the addition of the light rail station and the new parking structure, the portion of the campus experienced on foot now extends to the eastern boundary of the site. Improvements planned for the existing vast asphalt parking lot include walkways, bicycle routes, lighting, trees, landscaping and other [pedestrian] features distinct from vehicular routes. The area defined by the light rail station, Hughes Stadium and the planned parking structure is connected to the core of the campus by these improvements. Increasingly over time, this area is expected to become the students’ entrance to the College, at which time an appropriate gateway will mark that entrance. These improvements are planned to mitigate the restricted access many now face when commuting to the College and could have an impact on enrollment and students’ decision to attend Sacramento City College. These access-related improvements will increase the safety of SCC car and bicycle commuters and be beneficial also to the surrounding community. Planning of specific *Transportation, Parking and Access Plan* projects is underway, with an Environmental Impact Report (EIR) being written at this time and work on some parking lot reconfigurations and traffic signals expected to begin by 2005.
Bicycling Experience

Bicycling is a cost-effective and environmentally friendly way of commuting to SCC. In order to enhance this experience for cyclists, it is necessary to maximize safety and accessibility by developing specific bicycle-related features. These features include:

- Improved bicycle paths on Freeport Boulevard and Sutterville Road through coordination with the City of Sacramento and with local bicycle advocacy groups.
- A bicycle path from the Light Rail station to the SCC campus.
- Clearly identified areas where bicycle use is allowed or prohibited on campus.
- Bicycle racks and lockers located throughout the campus. These locations need to be well-monitored to promote safety and to deter theft.
- Clear signage indicating bicycle paths, entryways, and parking and storage areas.

(to be added after “vehicular gateways” on p. 4-5)

- Bicycling Gateways
 Improve bicycle access from street routes to bicycle parking areas by providing specific bicycle paths and entrances to the campus. Collaborate with the City of Sacramento to create safe bicycle paths and improve existing bicycle paths on Sutterville Road and Freeport Boulevard. Establish specific bicycle paths and riding areas within the campus. Develop a clear bike path between the Light Rail station and the campus. Identify clearly where bicycle commuters are permitted to ride on campus and where bicycle riding is prohibited. Provide clear signage throughout the campus regarding bicycle paths, entryways, and parking.
Transitional Spaces Between Buildings
Make spaces between buildings into places compatible with their scale and location within the campus. Avoid making unusable spaces or spaces that do not have a clearly defined use. Passageways and spaces between buildings are to be places to stay, a destination, not just a pathway between buildings or from parking areas to the campus core. Accomplish this by transforming leftover spaces into courtyards, arcades, or outdoor rooms and by creating wide spots in pathways for places to sit.

Provide interior and exterior open spaces that link activities and promote social interaction. These spaces will vary in scale and design and be a mixture of hard and softscapes. Design common open spaces to accommodate a variety of group sizes and individuals who might use these places to eat lunch, study, meet for coffee, hold discussion sections, etc.

Locate new buildings such that they create usable outdoor places and maintain the continuity of the campus. Do not locate buildings such that unusable or undefined spaces are created.

Safety
Visibility
Maximize the ability of users to observe open spaces, adjacent parking areas, bicycle storage locker and racks. Individuals transiting to and from bicycle parking areas share the risk with other vehicle owners in regards to personal safety and property loss. Wherever possible place indoor activity nodes and common spaces adjacent to out door open spaces and pathways, and arrange windows and glass doors to increase observations. Outdoor spaces will be visible by users from surrounding buildings.

Lighting
Vehicular Site Entrances: Design lighting to softly illuminate parkways and site entrances to parking areas, bicycle storage lockers and racks, that is adequate also for purposes of safety and visibility.

Pathways and Open Spaces: Light pedestrian paths and open spaces to softly illuminate paths, courtyards, and open spaces between parking areas, buildings, campus bicycle routes and the campus core. Adequately illuminate exterior spaces and pathways for purposes of safety and visibility. Clearly illuminate hidden recesses, corners, and elevation changes along pedestrian walkways.

Separation of Pedestrians and Vehicles
Minimize conflict between pedestrian, vehicular and bicycle circulation through use of clearly defined signage and separated routes. Separate pedestrian walkways from vehicular circulation routes using bollards and landscaped areas. Cyclists
should be directed to park in designated areas to minimize obstruction of sidewalks and entryways.
(to be inserted in pp. 4-12 and 4-13 of the Master Plan for Student Success – Facilities Component)

DIRECTIONARY QUESTIONS

1) In what ways does this project reinforce the architectural character of the existing campus?

2) What components of the project address the need for a facility that is environmentally responsible and sustainable? Can this project be considered for LEED certification?

2x) Does the project encourage students and staff to walk and bicycle to campus through the use of effective pedestrian and bicycle gateways?

3) How does this project improve or contribute positively to the pedestrian experience of the campus? How does the project’s design affect the following aspects of the pedestrian experience:
 a). A positive sense of safety for the buildings’ users and passing pedestrians
 b). Aesthetic experience
 c). Comfort
 d). Connection to the immediate surroundings, the campus, and the local community

4) How do pedestrian and bicycling gateways contribute to the collegiate experience of the students, staff, and visitors? What features of the project distinguish it as a campus gateway?

5) In what ways does the project protect pedestrian pathways from the sun and rain?

6) How are landscaping, detailing, materials, and site features used to create the greatest possible aesthetic experience along pedestrian pathways and links between buildings and outdoor spaces?

7) How are the spaces created around the project and between the project and adjacent buildings compatible with their scale and location within the campus?

8) For what purposes are the new spaces created around the project between the project and adjacent buildings to be used?

9) What kinds of spaces have been created around the project and between the project and adjacent buildings?

 a). Courtyards
 b). Arcades
 c). Outdoor Rooms
 d). Amphitheaters
 e). Places to sit
 f). Places to park bicycles
10) In what ways does this project promote social interaction?
11) How do the common indoor and/or outdoor spaces provided in this project accommodate different group sizes and activities?
12) From what locations and buildings are the outdoor open spaces, pathways, and parking areas created as part of this project visible?
13) To what level is the illumination of pathways, courtyards and open spaces between parking areas, buildings and the campus core provided for purposes of safety and visibility? How are hidden recesses and corners and changes in elevations created in this project illuminated to adequately ensure the safety of students, staff, and visitors?
14) How are parkways, site entrances, and parking areas illuminated to adequately ensure the safety of students, staff, and visitors?
15) In what ways are conflicts between pedestrian, bicycle, and vehicular circulation routes minimized?
16) What makes the vehicular entrance clearly visible to approaching vehicles? How is the intersection designed to eliminate conflicts with pedestrians, bicycles, and off-site traffic? How are landscaping, detailing, materials, and site features used to create the greatest possible aesthetic experience at major vehicular entrances?
17) How does the project affect bicyclists? Does it encourage students and staff to use their bicycles to get to and from campus? It is easily and safely accessible by bicycle? Are the interactions of cyclists with both vehicle traffic and pedestrians minimized? If applicable, does the project include secure and well-lighted bicycle parking nearby? Does the location and layout of the parking area discourage theft? Is it protected from the elements?